Using Topography to Meet Wildlife and Fuels Treatment Objectives in Fire- Suppressed Landscapes ENVIRONMENTAL ASSESSMENT Using Topography to Meet Wildlife and Fuels Treatment Objectives in Fire-Suppressed Landscapes
نویسندگان
چکیده
Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet multiple goals relating to sensitive species, fuels reduction, forest products, water, carbon storage, and ecosystem restoration. Using the Kings River area of the Sierra Nevada as a case study, we create areas of topographically-based units, Landscape Management Units (LMUs) using a three by three matrix (canyon, mid-slope, ridge-top and northerly, southerly, and neutral aspects). We describe their size, elevation, slope, aspect, and their difference in inherent wetness and solar radiation. We assess the predictive value and field applicability of LMUs by using existing data on stand conditions and two sensitive wildlife species. Stand conditions varied significantly between LMUs, with canyons consistently having the greatest stem and snag densities. Pacific fisher (Martes pennanti) activity points (from radio telemetry) and California spotted owl (Strix occidentalis occidentalis) nests, roosts, and sightings were both significantly different from uniform, with a disproportionate number of observations in canyons, and fewer than expected on ridge-tops. Given the distinct characteristics of the LMUs, these units provide a relatively simple but ecologically meaningful template for managers to spatially allocate forest treatments, thereby meeting multiple National Forest objectives. These LMUs provide a framework that can potentially be applied to other fire-dependent western forests with steep topographic relief.
منابع مشابه
Using Topography to Meet Wildlife and Fuels Treatment Objectives in Fire-Suppressed Landscapes
Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet multiple goals relating to sens...
متن کاملA computational method for optimising fuel treatment locations
Modelling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated), optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple, the application of these ...
متن کاملSpatial bottom-up controls on fire likelihood vary across western North America
The unique nature of landscapes has challenged our ability to make generalizations about the effects of bottom-up controls on fire regimes. For four geographically distinct fire-prone landscapes in western North America, we used a consistent simulation approach to quantify the influence of three key bottom-up factors, ignitions, fuels, and topography, on spatial patterns of fire likelihood. We ...
متن کاملApplication and Status of the Farsite Fire Area Simulator
Fire growth simulation is the modeling of fire spread and behavior across landscapes with heterogeneous fuels, weather, and topography. FARSITE is a computer program designed to simulate fire growth using existing models of fire behavior found in BEHAVE (Andrews 1986) and in the Canadian Forest Fire Behaviour Prediction System (Forestry Canada Fire Danger Group 1992). There are numerous uses fo...
متن کاملA Multivariate Approach to Mapping Forest Vegetation and Fuels Using Gis Databases, Satellite Imagery, and Forest Inventory Plots
Knowing the types and amounts of fuels at a site is an important prerequisite to evaluating fire risk, predicting fire behavior, and assessing potential fire effects. When these assessments are expanded to larger extents, the spatial configuration of the landscape fuel mosaic must also be considered (Keane et al. 2000: Keane et al. 1998). Spatial patterns of fuels, topography, and wind all inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010